Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors.
نویسندگان
چکیده
To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT(1A)) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT(1A)] with brain-restricted overexpression of AT(1A) receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to examine the water and sodium intake in this model under basal conditions and in response to increased ANG II levels. Baseline water and NaCl (0.3 M) intakes were significantly elevated in NSE-AT(1A) compared with nontransgenic littermates, and bolus intracerebroventricular injections of ANG II (200 ng in 200 nl) caused further enhanced water intake in NSE-AT(1A). Activation of endogenous ANG II production by sodium depletion (10 days low-sodium diet followed by furosemide, 1 mg sc) enhanced NaCl intake in NSE-AT(1A) mice compared with wild types. Fos immunohistochemistry, used to assess neuronal activation, demonstrated sodium depletion-enhanced activity in the anteroventral third ventricle region of the brain in NSE-AT(1A) mice compared with control animals. The results show that brain-selective overexpression of AT(1A) receptors results in enhanced salt appetite and altered water intake. This model provides a new tool for studying the mechanisms of brain AT(1A)-dependent water and salt consumption.
منابع مشابه
Brain-selective overexpression of angiotensin (AT1) receptors causes enhanced cardiovascular sensitivity in transgenic mice.
To examine the physiological importance of brain angiotensin II type 1 (AT1) receptors, we developed a novel transgenic mouse model with rat AT1a receptors targeted selectively to neurons of the central nervous system (CNS). A transgene consisting of 2.8 kb of the rat neuron-specific enolase (NSE) 5' flanking region fused to a cDNA encoding the full open-reading frame of the rat AT1a receptor w...
متن کاملDevelopment of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney.
Angiotensin II regulates blood pressure via activation of the type 1 receptor. We previously identified a novel angiotensin II type 1 receptor-associated protein and demonstrated that it promotes receptor recycling to the plasma membrane. To delineate the pathophysiological function of the ARAP1 in the kidneys, we generated transgenic mice that overexpress rat ARAP1 cDNA specifically in proxima...
متن کاملThe Effect of Enalapril on Brain Edema and Cytokine Production Following Transient Focal Cerebral Ischemia in Mice
Introduction: Cytokines production as one of the inflammatory pathways in CNS is responsible for most brain damages following ischemia. On the other hand, during inflammation and brain ischemia, most of the renin- angiotensin components (RAS) increase locally. While it is established that blockade of RAS especially AT1 receptors has a protective effect on ischemia, the interaction of cytokines ...
متن کاملBlockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...
متن کاملActivity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brain angiotensin.
Angiotensin-II production in the subfornical organ acting through angiotensin-II type-1 receptors is necessary for polydipsia, resulting from elevated renin-angiotensin system activity. Protein kinase C and mitogen-activated protein kinase pathways have been shown to mediate effects of angiotensin-II in the brain. We investigated mechanisms that mediate brain angiotensin-II-induced polydipsia. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 5 شماره
صفحات -
تاریخ انتشار 2008